An open mind, an open question…

An Information Integration Theory of Consciousness

69 min read
Abstract Background Consciousness poses two main problems. The first is understanding the conditions that determine to what extent a system has conscious experience. For instance, why is our consciousness generated by certain parts of our brain, such as the thalamocortical system, and not by other parts, such as the cerebellum? And why are we conscious [...]
image_pdfimage_print

Neural processes in cortico-subcortico-cortical loops, while important in the production and sequencing of action, thought, and language, do not contribute directly to conscious experience

Another set of neural structures that may not contribute directly to conscious experience are subcortical structures such as the basal ganglia. The basal ganglia are large nuclei that contain many circuits arranged in parallel, some implicated in motor and oculomotor control, others, such as the dorsolateral prefrontal circuit, in cognitive functions, and others, such as the lateral orbitofrontal and anterior cingulate circuits, in social behavior, motivation, and emotion [45]. Each basal ganglia circuit originates in layer V of the cortex, and through a last step in the thalamus, returns to the cortex, not far from where the circuit started [46]. Similarly arranged cortico-ponto-cerebello-thalamo-cortical loops also exist. Why is it that these complicated neural structures, which are tightly connected to the thalamocortical system at both ends, do not seem to provide much direct contribution to conscious experience? (see Appendix, x)

As shown in Fig. 4e, the addition of many parallel cycles also generally does not change the composition of the main complex, although Φ values can be altered (see Appendix, xi). Instead, the elements of the main complex and of the connected cycles form a joint complex that can only integrate the limited amount of information exchanged within each cycle. Thus, subcortical cycles or loops implement specialized subroutines that are capable of influencing the states of the main thalamocortical complex without joining it. Such informationally insulated cortico-subcortical loops could constitute the neural substrates for many unconscious processes that can affect and be affected by conscious experience [3, 47]. It is likely that new informationally insulated loops can be created through learning and repetition. For example, when first performing a new task, we are conscious of every detail of it, we make mistakes, are slow, and must make an effort. When we have learned the task well, we perform it better, faster, and with less effort, but we are also less aware of it. As suggested by imaging results, a large number of neocortical regions are involved when we first perform a task. With practice, activation is reduced or shifts to different circuits [48]. According to the theory, during the early trials, performing the task involves many regions of the main complex, while later certain aspects of the task are delegated to neural circuits, including subcortical ones, that are informationally insulated.

Many neural processes within the thalamocortical system may also influence conscious experience without contributing directly to it

Even within the thalamocortical system proper, a substantial proportion of neural activity does not appear to contribute directly to conscious experience. For example, what we see and hear requires elaborate computational processes dealing with figure-ground segregation, depth perception, object recognition, and language parsing, many of which take place in the thalamocortical system. Yet we are not aware of all this diligent buzzing: we just see objects, separated from the background and laid out in space, and know what they are, or hear words, nicely separated from each other, and know what they mean. As an example, take binocular rivalry, where the two eyes view two different images, but we perceive consciously just one image at a time, alternating in sequence. Recordings in monkeys have shown that the activity of visual neurons in certain cortical areas, such as the inferotemporal cortex, follows faithfully what the subject perceives consciously. However, in other areas, such as primary visual cortex, there are many neurons that respond to the stimulus presented to the eye, whether or not the subject is perceiving it [49]. Neuromagnetic studies in humans have shown that neural activity correlated with a stimulus that is not being consciously perceived can be recorded in many cortical areas, including the front of the brain. [26]. Why does the firing of many cortical neurons carrying out the computational processes that enable object recognition (or language parsing) not correspond to anything conscious?

The situation is similar on the executive side of consciousness. When we plan to do or say something, we are vaguely conscious of what we intend, and presumably these intentions are reflected in specific firing patterns of certain neuronal groups. Our vague intentions are then translated almost miraculously into the right words, and strung together to form a syntactically correct sentence that conveys what we meant to say. And yet again, we are not at all conscious of the complicated processing that is needed to carry out our intentions, much of which takes place in the cortex. What determines whether the firing of neurons within the thalamocortical system contributes directly to consciousness or not? According to the information integration theory, the same considerations that apply to input and output circuits and to cortico-subcortico-cortical loops also apply to circuits and loops contained entirely within the thalamocortical system. Thus, the theory predicts that activity within certain cortical circuits does not contribute to consciousness because such circuits implement informationally insulated loops that remain outside of the main thalamocortical complex. At this stage, however, it is hard to say precisely which cortical circuits may be informationally insulated. Are primary sensory cortices organized like massive afferent pathways to a main complex “higher up” in the cortical hierarchy? Is much of prefrontal cortex organized like a massive efferent pathway? Do certain cortical areas, such as those belonging to the dorsal visual stream, remain partly segregated from the main complex? Do interactions within a cortico-thalamic minicolumn qualify as intrinsic mini-loops that support the main complex without being part of it? Unfortunately, answering these questions and properly testing the predictions of the theory requires a much better understanding of cortical neuroanatomy than is presently available [<a id=”ref-link-section-d57555e1229″ title=”Ascoli GA: Progress and perspectives in computational neuroanatomy. Anat Rec. 1999, 257 (6): 195-207. 10.1002/(SICI)1097-0185(19991215)257:63.0.CO;2-H.” href=”https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-5-42#ref-CR50″ data-track=”click” data-track-action=”reference anchor” data-track-label=”link” data-test=”citation-ref” aria-label=”Reference 50″>50, 51].

Related posts:

Leave a Reply

Your email address will not be published. Required fields are marked *